Artificial Intelligence from the Perspective of Science and Technology Studies

Authors

DOI:

https://doi.org/10.35319/puntocero.202551421

Keywords:

Artificial Intelligence, Social Construction of Technology, Politics of Technology, Actor- Network Theory

Abstract

This essay aims to propose a social framework for the analysis and research of Artificial Intelligence, drawing on the approach of Social Studies of Technology. To this end, after an initial technical and historical section, we utilize and adapt three theoretical frameworks from this field: the social construction of technology, the politics of technology, and sociotechnical networks. This approach yields theoretical and conceptual guidelines for analyzing, debating, and researching topics related to Artificial Intelligence and Society, from a perspective that transcends mere technological determinism. This perspective considers social diversity and contingency in the production and use of Artificial Intelligence; the political decisions and consequences of its design; and the ontological challenge of understanding its innovation, heterogeneity, and evolution.

Author Biography

Alex Ojeda Copa, Universidad Mayor de San Simón

Bolivian. Sociologist and computer scientist, specialist in digital sociology. Master’s degree in Social Science Research, Master’s degree in Software Engineering and Computer Systems, and Ph.D. in Social Studies. Director of the Laboratory of Social Technologies (Lab TecnoSocial).

References

Benjamin, R. (2019). Race After Technology: Abolitionist Tools for the New Jim Code. Polity.

Bostrom, N. (2017). Superintelligence: Paths, Dangers, Strategies. Oxford University Press.

Chomsky, N., Roberts, I., & Watumull, J. (2023). Noam chomsky: The false promise of chatgpt. The New York Times, 8.

Couldry, N., & Mejias, U. A. (2023). The decolonial turn in data and technology research: What is at stake and where is it heading? Information, Communication & Society, 26(4), 786–802.

Crawford, K. (2021). Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence. Yale University Press.

Eubanks, V. (2018). Automating inequality: How high-tech tools profile, police, and punish the poor. Macmillan.

Foucault, M. (2006). Seguridad, territorio, población: Curso en el Collège de France (1977-1978). Fondo de Cultura Económica.

Graubard, S. R. (1999). El nuevo debate sobre la inteligencia artificial: Sistemas simbólicos y redes neuronales (2a ed). Gedisa.

Gray, M. L., & Suri, S. (2019). Ghost Work: How to Stop Silicon Valley from Building a New Global Underclass. Harper Business.

Latour, B. (2008). Reensamblar lo social: Una introducción a la teoría del actor-red. Manantial. (Obra original publicada en 2005).

Latour, B. (2012). Cogitamus: Seis cartas sobre las humanidades científicas. Paidos México.

Latour, B., Maugin, P., & Teil, G. (1992). A New Method to Trace the Path of Innovations. The “socio-technical graph”. Social Studies of Science, 22.

Lipton, Z. C. (2018). The Mythos of Model Interpretability. Queue, 16(3), 31–57. https://doi.org/10.1145/3236386.3241340

McCarthy, J., Minsky, M., Rochester, N., & Shannon, C. (1955). A proposal for the Dartmouth Summer Research Project on Artificial Intelligence.

McDermid, J. A., Jia, Y., Porter, Z., & Habli, I. (2021). Artificial intelligence explainability: The technical and ethical dimensions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379 (2207).

Minsky, M., & Papert, S. (1969). Perceptrons; an Introduction to Computational Geometry. MIT Press.

Mitchell, M. (2024). Inteligencia artificial. Guía para seres pensantes. Capitán Swing. (Obra original publicada en 2019).

Ojeda, A. (2023). Un laboratorio de tecnologías sociales desde Bolivia. Pléyade, 32, 32–44.

Ojeda, A. (2024). Digitalización societal: Teorías e índices globales y el caso boliviano [Tesis Doctoral]. Universidad Mayor de San Simón.

O’Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown.

Pinch, T., & Bijker, W. (2008). La construcción social de hechos y artefactos. En Actos, actores y artefactos: Sociología de la tecnología. Universidad Nacional de Quilmes. (Obra original publicada en 1984).

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408.

Rumelhart, D. E., Mcclelland, J. L., & Group, P. R. (1987). Parallel Distributed Processing, Volume 1: Explorations in the Microstructure of Cognition: Foundations. MIT Press.

Russell, S. J., & Norvig, P. (2022). Artificial intelligence: A modern approach. Pearson.

Sismondo, S. (2010). An Introduction to Science and Technology Studies. Wiley-Blackwell.

Tegmark, M. (2018). Vida 3.0: Que significa ser humano en la era de la inteligencia artificial. Taurus. (Obra original publicada en 2017).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need (No. arXiv:1706.03762).

Winner, L. (1983). ¿Tienen política los artefactos? D. Mackenzie et al.

Winner, L. (1993). Upon Opening the Black Box and Finding It Empty: Social Constructivism and the Philosophy of Technology. Science, Technology & Human Values, 18(3), 362–378.

Wodecki, B. (2024, febrero 8). Meta’s Yann LeCun Wants to Ditch Generative AI. AI Business.

Wooldridge, M. J. (2021). A brief history of artificial intelligence: What it is, where we are, and where we are going (First U.S. edition). Flatiron Books.

Zuboff, P. S. (2019). The Age of Surveillance Capitalism: The Fight for the Future at the New Frontier of Power. Profile Books.

La Inteligencia Artificial desde la perspectiva de los Estudios Sociales de la Tecnología

Published

2025-12-30

How to Cite

Ojeda Copa, A. (2025). Artificial Intelligence from the Perspective of Science and Technology Studies. Revista Punto Cero, 30(51), 78–92. https://doi.org/10.35319/puntocero.202551421